Automatic Sequences

Anatoly Zavyalov

University of Toronto

June 21, 2023

Anatoly Zavyalov (University of Toronto

Automatic Sequences

- I am entering my fourth year as an undergraduate at the University of Toronto (St. George).
- I study math, computer science, and physics.
- My research interests are theoretical computer science (especially automata theory), and discrete math in general. Previously, I have also done research in astronomy.
- I also play piano and make video games for fun.

Photo Credit: Anastasia Zhurikhina

2 / 33

Table of Contents

1 Deterministic Finite Automata

- 2 Automatic Sequences
- 3 Cool Examples
 - Thue-Morse Sequence

Transducers

• 25¢

• 25¢

• 5¢5¢10¢5¢

• 25¢

- 5¢5¢10¢5¢
- 10¢ 5¢ 5¢ 5¢

• 25¢

- 5¢5¢10¢5¢
- 10¢ 5¢ 5¢ 5¢

But not:

● 5¢5¢

• 25¢

- 5¢5¢10¢5¢
- 10¢ 5¢ 5¢ 5¢

But not:

- 5¢5¢
- ε (empty string)

• 25¢

- 5¢5¢10¢5¢
- 10¢ 5¢ 5¢ 5¢

But not:

- 5¢5¢
- ε (empty string)
- 10¢ 25¢ (BOOM!)

Deterministic Finite Automaton

Here is a deterministic finite automaton (DFA) for the gumball machine:

The states tracks how much money has been paid so far. Once the 25 state is reached, the fare is accepted.

Anatoly Zavyalov (University of Toronto

Automatic Sequences

Definition

A deterministic finite automaton (DFA) is a tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the *initial state*
- $F \subseteq Q$ are the *accepting/final states*

Definition

A deterministic finite automaton (DFA) is a tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is a finite set of *states*
- Σ is the (finite) input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the *transition function*
- $q_0 \in Q$ is the *initial state*
- $F \subseteq Q$ are the *accepting/final states*

A DFA *M* accepts $x \in \Sigma^*$ if x ends at a state in *F* when passed through *M*.

DFA Example

What kinds of strings does this automaton accept?

DFA Example

What kinds of strings does this automaton accept? • 001

- 001
- 0100011

What strings will it reject?

- 001
- 0100011

What strings will it reject?

• 1010

- 001
- 0100011

What strings will it reject?

- 1010
- 0000000

- 001
- 0100011

What strings will it reject?

- 1010
- 0000000

Accepts $x \in \{0, 1\}^*$ if and only if x the parity of the number of 1 in x is odd, or equivalently if the sum of the digits of x is odd.

DFA as a computational model

- DFAs are a memoryless computational model: they only remember what state it is on!
- They are very simple, but can be used to solve surprisingly difficult problems.

Legendre's three square theorem says that a number $n \in \mathbb{N}$ is a sum of three squares of integers

$$n = x^2 + y^2 + z^2$$

if and only if n is not of the form $n = 4^{a}(8b+7)$ for $a, b \in \mathbb{Z}_{\geq 0}$.

Legendre's three square theorem says that a number $n \in \mathbb{N}$ is a sum of three squares of integers

$$n = x^2 + y^2 + z^2$$

if and only if n is not of the form $n = 4^{a}(8b+7)$ for $a, b \in \mathbb{Z}_{\geq 0}$.

We will make a DFA that reads in a binary representation of n and accepts if and only if n is a sum of three squares of integers.

Suppose $n = 4^{a}(8b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n?

10/33

Suppose $n = 4^{a}(8b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n?

If $b \in \mathbb{Z}_{\geq 0}$, then $(8b)_2$ looks like

Suppose $n = 4^{a}(8b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n?

If $b \in \mathbb{Z}_{\geq 0}$, then $(8b)_2$ looks like

So $(8b+7)_2$ looks like

Suppose $n = 4^{a}(8b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n?

If $b \in \mathbb{Z}_{\geq 0}$, then $(8b)_2$ looks like

So $(8b+7)_2$ looks like

Lastly, $(4^{a}(8b+7))_{2}$ looks like

The automaton that accepts $(n)_2$ if and only if it is in the form

Anatoly Zavyalov (University of Toronto

Automatic Sequences

The automaton that accepts $(n)_2$ if and only if it is in the form

So this automaton accepts $(n)_2$ if and only if *n* is not a sum of three squares.

Anatoly Zavyalov (University of Toronto

11/33

To accept all $(n)_2$ if and only if *n* is a sum of three squares, just flip the final states:

Deterministic Finite Automaton with Output (DFAO)

Instead of final states, let's give our automaton an output on every state:

This is called a deterministic finite automaton with output (DFAO).

Definition

A deterministic finite automaton with output (DFAO) is a tuple $M = \langle Q, \Sigma, \delta, q_0, \Delta, \lambda \rangle$, where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the *initial state*
- Δ is the (finite) *output alphabet*
- $\lambda: Q \to \Delta$ is the coding (output function)

n	$(n)_{2}$	t [<i>n</i>]
0	0	0
1	1	1
2	10	

n	$(n)_{2}$	t [<i>n</i>]
0	0	0
1	1	1
2	10	1
3	11	

п	(<i>n</i>) ₂	t [<i>n</i>]
0	0	0
1	1	1
2 3	10	1
	11	0
4	100	

п	(<i>n</i>) ₂	t [<i>n</i>]
0	0	0
1	1	1
2	10	1
3	11	0
4	100	1
5	101	

n	(<i>n</i>) ₂	t [<i>n</i>]
0	0	0
1	1	1
2	10	1
3 4	11	0
	100	1
5	101	0
6	110	

n	(<i>n</i>) ₂	t [<i>n</i>]
0	0	0
1	1	1
2	10	1
3 4	11	0
4	100	1
5	101	0
6	110	0
7	111	

п	(<i>n</i>) ₂	t [<i>n</i>]
0	0	0
1	1	1
2	10	1
3	11	0
4	100	1
5	101	0
6	110	0
7	111	1
:		

Example: Thue-Morse sequence

This automaton computes the Thue-Morse sequence

 $t = 0110\,1001\,1001\,0110\cdots$,

where $\mathbf{t}[n]$ is the parity of the number of 1s in the binary representation of *n*, or equivalently the sum (mod 2) of the bits in $(n)_2$.

Example: Thue-Morse sequence

This automaton computes the Thue-Morse sequence

 $t = 0110\,1001\,1001\,0110\cdots$,

where t[n] is the parity of the number of 1s in the binary representation of n, or equivalently the sum (mod 2) of the bits in $(n)_2$.

A sequence that can be computed by an automaton in this way is called automatic.

Definition

Let $M = \langle Q, \Sigma, \delta, q_0, \Delta, \lambda \rangle$ is a DFAO and suppose $\Sigma = \{0, \dots, k-1\}$ for some $k \in \mathbb{N}$. The sequence $(x_n)_{n \ge 0}$ computed by M is defined by

 $x_n = \lambda(\delta(q_0, (n)_k)),$

where $(n)_k$ denotes the most-significant-digit-first base-k representation of $n \in \mathbb{N}$, i.e. $(n)_k = d_t d_{t-1} \cdots d_1 d_0$ where $n = \sum_{i=0}^t d_i k^i$ and $d_i \in \{0, \ldots, k-1\}$ for all $i = 0, \ldots, t$.

A sequence $\mathbf{x} = (x_n)_{n \ge 0}$ is called *k*-automatic if there exists a DFAO *M* with input alphabet $\Sigma = \{0, \dots, k-1\}$ that computes \mathbf{x} .

The three-fold repetition rule in chess states that if the same position is reached three times, then the game is declared a draw.

With this rule, games cannot go on forever, as there are only a finite number of positions.

The three-fold repetition rule in chess states that if the same position is reached three times, then the game is declared a draw.

With this rule, games cannot go on forever, as there are only a finite number of positions.

A former (German) official rule (up until 1929) was as follows: if the same *sequence of moves* is made *three times in a row*, then the game is declared a draw.

Can infinite games exist with this weakened rule?

The three-fold repetition rule in chess states that if the same position is reached three times, then the game is declared a draw.

With this rule, games cannot go on forever, as there are only a finite number of positions.

A former (German) official rule (up until 1929) was as follows: if the same *sequence of moves* is made *three times in a row*, then the game is declared a draw.

Can infinite games exist with this weakened rule?

Yes!

18/33

Max Euwe, a Dutch mathematician and former chess world champion, showed that infinite chess games are possible under this rule using the Thue-Morse sequence!

Max Euwe (1901 - 1981) Credit: Wikipedia

The Thue-Morse sequence is cubefree: it contains no blocks of the form XXX.

For example,

011010011**001**0110····

- "001001001" will never appear in the Thue-Morse sequence.
- We use this property of the Thue-Morse sequence to construct our infinite game.

Infinite chess games!

$0 \mapsto Nc3 Nc6, Nb1 Nb8$ $1 \mapsto Nf3 Nf6, Ng1 Ng8$

Anatoly Zavyalov (University of Toronto

21 / 33

Infinite chess games!

 $0 \mapsto Nc3 Nc6, Nb1 Nb8$ $1 \mapsto Nf3 Nf6, Ng1 Ng8$

Apply these moves in the order of the Thue-Morse sequence:

```
0110100110010110...
```

Because the Thue-Morse sequence is cubefree, the same sequence of moves will never be made three times in a row! Take a piece of paper and keep folding it in the same direction, then unfold it.

Take a piece of paper and keep folding it in the same direction, then unfold it.

Credit: (French) Wikipedia

Anatoly Zavyalov (University of Toronto

Automatic Sequences

June 21, 2023

22 / 33

Paperfolding Sequence

Call every left turn a 0, and every right turn a 1.

110 1101100 110110011100100 ...

Credit: Wikipedia

Anatoly Zavyalov (University of Toronto

1

Automatic Sequences

Paperfolding Sequence

Call every left turn a 0, and every right turn a 1.

Credit: Wikipedia

Extending this to infinity, we get the paperfolding sequence (also called the dragon curve sequence):

 $110110011100100111011000110010011\cdots$

Anatoly Zavyalov (University of Toronto

Automatic Sequences

Paperfolding Sequence

After 12 folds. Credit: Allouche & Shallit

Anatoly Zavyalov (University of Toronto

Automatic Sequences

June 21, 2023

24/33

The paperfolding sequence is automatic, computed by this automaton:

To determine whether the k'th fold is a left or right turn, just feed $(k)_2$ into this automaton and look at the output!

What if instead of putting the outputs on the states, we put them on the edges?

This is a transducer.

As we input a string into a transducer, we write down the outputs of the edges we pass through.

Transducers

Definition

A transducer is a tuple

$$T = \langle V, \Delta, \varphi, v_0, \Gamma, \sigma \rangle,$$

where

- V is a finite set of states
- Δ is the finite *input alphabet*
- $\varphi: V \times \Delta \rightarrow V$ is the transition function
- $v_0 \in V$ is the *initial state*
- Γ is the finite *output alphabet*
- $\sigma: V \times \Delta \rightarrow \Gamma$ is the output function

Example: Running sum transducer

This transducer outputs the running sum mod 2 of the input.

Anatoly Zavyalov (University of Toronto

Automatic Sequences

June 21, 2023

28/33

Example: Running sum of Thue-Morse

Thue-Morse sequence:

Continue taking running sums,

$$\mathbf{t} = 0110\ 1001\ 1001\ 0110\cdots$$
$$\mathcal{T}(\mathbf{t}) = 0100\ 1110\ 1110\ 0100\cdots$$
$$\mathcal{T}^{2}(\mathbf{t}) = 0111\ 0100\ 1011\ 1000\cdots$$
$$\mathcal{T}^{3}(\mathbf{t}) = 0101\ 1000\ 1101\ 0000\cdots$$
$$\mathcal{T}^{4}(\mathbf{t}) = 0110\ 1000\ 1001\ 0000$$

÷

Example: Running sum of Thue-Morse

If we plot each running sum on a separate row, we get an awesome Sierpinski-like fractal:

• Automatic sequences are a class of sequences that are computed by finite automata.

- Automatic sequences are a class of sequences that are computed by finite automata.
- A lot of seemingly difficult problems become surprisingly simple after viewing them through the lens of automata theory.

- Automatic sequences are a class of sequences that are computed by finite automata.
- A lot of seemingly difficult problems become surprisingly simple after viewing them through the lens of automata theory.

Further reading:

• For automatic sequences: "Automatic Sequences: Theory, Applications, Generalizations" by Jean-Paul Allouche and Jeffrey Shallit

- Automatic sequences are a class of sequences that are computed by finite automata.
- A lot of seemingly difficult problems become surprisingly simple after viewing them through the lens of automata theory.

Further reading:

- For automatic sequences: "Automatic Sequences: Theory, Applications, Generalizations" by Jean-Paul Allouche and Jeffrey Shallit
- For transducers: Jeffrey Shallit, Anatoly Zavyalov. "Transduction of Automatic Sequences and Applications" (https://arxiv.org/abs/2303.15203)

Thank you!

< 行

æ