Automatic Sequences

Anatoly Zavyalov
University of Toronto
June 21, 2023

About me

- I am entering my fourth year as an undergraduate at the University of Toronto (St. George).
- I study math, computer science, and physics.
- My research interests are theoretical computer science (especially automata theory), and discrete math in general. Previously, I have also done research in astronomy.
- I also play piano and make video games for fun.

Photo Credit:
Anastasia Zhurikhina

Table of Contents

(1) Deterministic Finite Automata
(2) Automatic Sequences
(3) Cool Examples

- Thue-Morse Sequence
(4) Transducers

Gum

A gumball machine charges $25 \downarrow$ for a gumball, and exact change is needed. The only types of coins you can choose from are $5 ¢, 10 q$, and $25 \downarrow$. If you put in more than 25Φ, the gumball machine explodes. In what ways can you get a gumball?

Gum

A gumball machine charges $25 \downarrow$ for a gumball, and exact change is needed. The only types of coins you can choose from are $5 ¢, 10 q$, and $25 \downarrow$. If you put in more than 25Φ, the gumball machine explodes. In what ways can you get a gumball?

- 25 ¢

Gum

A gumball machine charges $25 \downarrow$ for a gumball, and exact change is needed. The only types of coins you can choose from are $5 ¢, 10 q$, and $25 q$. If you put in more than $25 \ddagger$, the gumball machine explodes. In what ways can you get a gumball?

- 25Φ
- $5 \nsubseteq 5 \nsubseteq 10 \$ 5 థ$

Gum

A gumball machine charges $25 \downarrow$ for a gumball, and exact change is needed. The only types of coins you can choose from are $5 q, 10 q$, and $25 \downarrow$. If you put in more than 25Φ, the gumball machine explodes. In what ways can you get a gumball?

- $25 \$$
- $5 \nsubseteq 5 \Phi 10 \$ 5 \$$
- $10 \$ 5 \Phi 5 \ddagger 5 \Phi$

Gum

A gumball machine charges $25 \downarrow$ for a gumball, and exact change is needed. The only types of coins you can choose from are $5 q, 10 q$, and $25 \downarrow$. If you put in more than 25Φ, the gumball machine explodes. In what ways can you get a gumball?

- 25 ¢
- $5 \$ 5 \not \subset 10 \$ 5 \$$
- $10 \$ 5 \$ 5 \$ 5 \$$

But not:

- $5 \ddagger 5$ ¢

Gum

A gumball machine charges $25 \nmid$ for a gumball, and exact change is needed. The only types of coins you can choose from are $5 ¢, 10 \$$, and $25 \downarrow$. If you put in more than 25Φ, the gumball machine explodes. In what ways can you get a gumball?

- 25 ¢
- $5 \$ 5 \$ 10 \$ 5 \$$
- $10 \$ 5 \$ 5 \$ 5 \$$

But not:

- $5 థ 5 \ddagger$
- ε (empty string)

Gum

A gumball machine charges $25 \nmid$ for a gumball, and exact change is needed. The only types of coins you can choose from are $5 ¢, 10 \$$, and $25 \downarrow$. If you put in more than 25Φ, the gumball machine explodes. In what ways can you get a gumball?

- 25 ¢
- $5 \$ 5 \$ 10 \$ 5 \$$
- $10 \$ 5 \$ 5 \$ 5 \$$

But not:

- $5 \ddagger 5$ ¢
- ε (empty string)
- 10ゅ $25 \$$ (BOOM!)

Deterministic Finite Automaton

Here is a deterministic finite automaton (DFA) for the gumball machine:

The states tracks how much money has been paid so far. Once the 25 state is reached, the fare is accepted.

Deterministic Finite Automaton

Definition

A deterministic finite automaton (DFA) is a tuple $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ are the accepting/final states

Deterministic Finite Automaton

Definition

A deterministic finite automaton (DFA) is a tuple $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ are the accepting/final states

A DFA M accepts $x \in \Sigma^{*}$ if x ends at a state in F when passed through M.

DFA Example

What kinds of strings does this automaton accept?

DFA Example

What kinds of strings does this automaton accept?

- 001

DFA Example

What kinds of strings does this automaton accept?

- 001
- 0100011

What strings will it reject?

DFA Example

What kinds of strings does this automaton accept?

- 001
- 0100011

What strings will it reject?

- 1010

DFA Example

What kinds of strings does this automaton accept?

- 001
- 0100011

What strings will it reject?

- 1010
- 0000000

DFA Example

What kinds of strings does this automaton accept?

- 001
- 0100011

What strings will it reject?

- 1010
- 0000000

Accepts $x \in\{0,1\}^{*}$ if and only if x the parity of the number of 1 in x is odd, or equivalently if the sum of the digits of x is odd.

DFA as a computational model

- DFAs are a memoryless computational model: they only remember what state it is on!
- They are very simple, but can be used to solve surprisingly difficult problems.

Example: Sum of three squares

Legendre's three square theorem says that a number $n \in \mathbb{N}$ is a sum of three squares of integers

$$
n=x^{2}+y^{2}+z^{2}
$$

if and only if n is not of the form $n=4^{a}(8 b+7)$ for $a, b \in \mathbb{Z}_{\geq 0}$.

Example: Sum of three squares

Legendre's three square theorem says that a number $n \in \mathbb{N}$ is a sum of three squares of integers

$$
n=x^{2}+y^{2}+z^{2}
$$

if and only if n is not of the form $n=4^{a}(8 b+7)$ for $a, b \in \mathbb{Z}_{\geq 0}$.
We will make a DFA that reads in a binary representation of n and accepts if and only if n is a sum of three squares of integers.

Example: Sum of three squares

Suppose $n=4^{a}(8 b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n ?

Example: Sum of three squares

Suppose $n=4^{a}(8 b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n ?

If $b \in \mathbb{Z}_{\geq 0}$, then $(8 b)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 000
$$

Example: Sum of three squares

Suppose $n=4^{a}(8 b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n ?
If $b \in \mathbb{Z}_{\geq 0}$, then $(8 b)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 000
$$

So $(8 b+7)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111
$$

Example: Sum of three squares

Suppose $n=4^{a}(8 b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n ?

If $b \in \mathbb{Z}_{\geq 0}$, then $(8 b)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 000
$$

So $(8 b+7)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111
$$

Lastly, $\left(4^{a}(8 b+7)\right)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111 \underbrace{00 \cdots 00}_{\begin{array}{c}
\text { even \# of } 0 \text { 's, } \\
\text { may be } \varepsilon
\end{array}}
$$

Example: Sum of three squares

The automaton that accepts $(n)_{2}$ if and only if it is in the form

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111 \underbrace{00 \cdots 00}_{\begin{array}{c}
\text { even \# of 0's, } \\
\text { may be } \varepsilon
\end{array}}
$$

is:

Example: Sum of three squares

The automaton that accepts $(n)_{2}$ if and only if it is in the form

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111 \underbrace{00 \cdots 00}_{\begin{array}{c}
\text { even } \# \text { of } 0 \text { 's, } \\
\text { may be } \varepsilon
\end{array}}
$$

is:

So this automaton accepts $(n)_{2}$ if and only if n is not a sum of three squares.

Example: Sum of three squares

To accept all $(n)_{2}$ if and only if n is a sum of three squares, just flip the final states:

Deterministic Finite Automaton with Output (DFAO)

Instead of final states, let's give our automaton an output on every state:

This is called a deterministic finite automaton with output (DFAO).

DFAO

Definition

A deterministic finite automaton with output (DFAO) is a tuple $M=\left\langle Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right\rangle$, where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- Δ is the (finite) output alphabet
- $\lambda: Q \rightarrow \Delta$ is the coding (output function)

Automatic Sequences

Let's take a DFAO with transitions labelled by 0 and 1 , and put numbers in base-2 into it.

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	

Automatic Sequences

Let's take a DFAO with transitions labelled by 0 and 1 , and put numbers in base-2 into it.

Automatic Sequences

Let's take a DFAO with transitions labelled by 0 and 1 , and put numbers in base-2 into it.

Automatic Sequences

Let's take a DFAO with transitions labelled by 0 and 1 , and put numbers in base-2 into it.

Automatic Sequences

Let's take a DFAO with transitions labelled by 0 and 1 , and put numbers in base-2 into it.

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	$\mathbf{0}$
1	1	$\mathbf{1}$
2	10	$\mathbf{1}$
3	11	$\mathbf{0}$
4	100	

Automatic Sequences

Let's take a DFAO with transitions labelled by 0 and 1 , and put numbers in base-2 into it.

Automatic Sequences

Let's take a DFAO with transitions labelled by 0 and 1 , and put numbers in base-2 into it.

Automatic Sequences

Let's take a DFAO with transitions labelled by 0 and 1 , and put numbers in base-2 into it.

Automatic Sequences

Let's take a DFAO with transitions labelled by 0 and 1 , and put numbers in base-2 into it.

Example: Thue-Morse sequence

This automaton computes the Thue-Morse sequence

$$
\mathbf{t}=0110100110010110 \cdots,
$$

where $\mathbf{t}[n]$ is the parity of the number of 1 s in the binary representation of n, or equivalently the sum $(\bmod 2)$ of the bits in $(n)_{2}$.

Example: Thue-Morse sequence

This automaton computes the Thue-Morse sequence

$$
\mathbf{t}=0110100110010110 \cdots,
$$

where $\mathbf{t}[n]$ is the parity of the number of 1 s in the binary representation of n, or equivalently the sum $(\bmod 2)$ of the bits in $(n)_{2}$.

A sequence that can be computed by an automaton in this way is called automatic.

Automatic sequence

Definition

Let $M=\left\langle Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right\rangle$ is a DFAO and suppose $\Sigma=\{0, \ldots, k-1\}$ for some $k \in \mathbb{N}$. The sequence $\left(x_{n}\right)_{n \geq 0}$ computed by M is defined by

$$
x_{n}=\lambda\left(\delta\left(q_{0},(n)_{k}\right)\right)
$$

where $(n)_{k}$ denotes the most-significant-digit-first base- k representation of $n \in \mathbb{N}$, i.e. $(n)_{k}=d_{t} d_{t-1} \cdots d_{1} d_{0}$ where $n=\sum_{i=0}^{t} d_{i} k^{i}$ and $d_{i} \in\{0, \ldots, k-1\}$ for all $i=0, \ldots, t$.

A sequence $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ is called k-automatic if there exists a DFAO M with input alphabet $\Sigma=\{0, \ldots, k-1\}$ that computes x.

Infinite chess games?

The three-fold repetition rule in chess states that if the same position is reached three times, then the game is declared a draw.
With this rule, games cannot go on forever, as there are only a finite number of positions.

Infinite chess games?

The three-fold repetition rule in chess states that if the same position is reached three times, then the game is declared a draw.
With this rule, games cannot go on forever, as there are only a finite number of positions.

A former (German) official rule (up until 1929) was as follows: if the same sequence of moves is made three times in a row, then the game is declared a draw.

Can infinite games exist with this weakened rule?

Infinite chess games?

The three-fold repetition rule in chess states that if the same position is reached three times, then the game is declared a draw.
With this rule, games cannot go on forever, as there are only a finite number of positions.

A former (German) official rule (up until 1929) was as follows: if the same sequence of moves is made three times in a row, then the game is declared a draw.

Can infinite games exist with this weakened rule?
Yes!

Infinite chess games!

Max Euwe, a Dutch mathematician and former chess world champion, showed that infinite chess games are possible under this rule using the Thue-Morse sequence!

Max Euwe (1901-1981)
Credit: Wikipedia

Infinite chess games!

The Thue-Morse sequence is cubefree: it contains no blocks of the form $X X X$.

For example,

$0110100110010110 \ldots$

"001001001" will never appear in the Thue-Morse sequence.
We use this property of the Thue-Morse sequence to construct our infinite game.

Infinite chess games!

$0 \mapsto$ Nc3 Nc6, Nb1 Nb8 $1 \mapsto N f 3$ Nf6, Ng1 Ng8

Infinite chess games!

$0 \mapsto N c 3$ Nc6, Nb1 Nb8 $1 \mapsto N f 3 \mathrm{Nf6}, \mathrm{Ng} 1 \mathrm{Ng} 8$

Apply these moves in the order of the Thue-Morse sequence:

$0110100110010110 \ldots$

Because the Thue-Morse sequence is cubefree, the same sequence of moves will never be made three times in a row!

Paperfolding Sequence

Take a piece of paper and keep folding it in the same direction, then unfold it.

Paperfolding Sequence

Take a piece of paper and keep folding it in the same direction, then unfold it.

Credit: (French) Wikipedia

Paperfolding Sequence

Call every left turn a 0 , and every right turn a 1 .

Credit: Wikipedia

Paperfolding Sequence

Call every left turn a 0 , and every right turn a 1 .

Extending this to infinity, we get the paperfolding sequence (also called the dragon curve sequence):

$110110011100100111011000110010011 \cdots$

Paperfolding Sequence

After 12 folds. Credit: Allouche \& Shallit

Paperfolding Sequence

The paperfolding sequence is automatic, computed by this automaton:

To determine whether the k 'th fold is a left or right turn, just feed $(k)_{2}$ into this automaton and look at the output!

Transducers

What if instead of putting the outputs on the states, we put them on the edges?

This is a transducer.
As we input a string into a transducer, we write down the outputs of the edges we pass through.

Transducers

Definition

A transducer is a tuple

$$
T=\left\langle V, \Delta, \varphi, v_{0}, \Gamma, \sigma\right\rangle
$$

where

- V is a finite set of states
- Δ is the finite input alphabet
- $\varphi: V \times \Delta \rightarrow V$ is the transition function
- $v_{0} \in V$ is the initial state
- Γ is the finite output alphabet
- $\sigma: V \times \Delta \rightarrow \Gamma$ is the output function

Example: Running sum transducer

This transducer outputs the running sum mod 2 of the input.

Example: Running sum of Thue-Morse

Thue-Morse sequence:

$$
t=0110100110010110 \cdots
$$

$T(\mathbf{t})=0100111011100100 \cdots$

Example: Running sum of Thue-Morse

Continue taking running sums,

$$
\begin{aligned}
\mathbf{t} & =0110100110010110 \cdots \\
T(\mathbf{t}) & =0100111011100100 \cdots \\
T^{2}(\mathbf{t}) & =0111010010111000 \cdots \\
T^{3}(\mathbf{t}) & =0101100011010000 \cdots \\
T^{4}(\mathbf{t}) & =0110100010010000
\end{aligned}
$$

Example: Running sum of Thue-Morse

If we plot each running sum on a separate row, we get an awesome Sierpinski-like fractal:

Summary

- Automatic sequences are a class of sequences that are computed by finite automata.

Summary

- Automatic sequences are a class of sequences that are computed by finite automata.
- A lot of seemingly difficult problems become surprisingly simple after viewing them through the lens of automata theory.

Summary

- Automatic sequences are a class of sequences that are computed by finite automata.
- A lot of seemingly difficult problems become surprisingly simple after viewing them through the lens of automata theory.
Further reading:
- For automatic sequences: "Automatic Sequences: Theory, Applications, Generalizations" by Jean-Paul Allouche and Jeffrey Shallit

Summary

- Automatic sequences are a class of sequences that are computed by finite automata.
- A lot of seemingly difficult problems become surprisingly simple after viewing them through the lens of automata theory.
Further reading:
- For automatic sequences: "Automatic Sequences: Theory, Applications, Generalizations" by Jean-Paul Allouche and Jeffrey Shallit
- For transducers: Jeffrey Shallit, Anatoly Zavyalov. "Transduction of Automatic Sequences and Applications" (https://arxiv.org/abs/2303.15203)

Thank you!

