Automatic Sequences

Anatoly Zavyalov
University of Toronto
January 19, 2023

About me

- I am a third-year undergraduate student at the University of Toronto (St. George).
- I study math, computer science, and physics.
- I have been doing research in automata theory since summer of 2022, and have previously done research in astronomy.
- I also play piano and make video games for fun.

Photo Credit:
Anastasia Zhurikhina

Table of Contents

(1) Deterministic Finite Automata
(2) Automatic Sequences
(3) Thue-Morse sequence

4 Applications of the Thue-Morse sequence

- Fair sharing problem
- Infinite Chess Games
(5) Transducers
(6) Beyond base-k

Getting on the Bus

Bus fare costs $25 \$$, and exact change is needed. The only types of coins you can choose from are $5 \$, 10 \$$, and $25 \$$. In what ways can you pay the fare?

Getting on the Bus

Bus fare costs $25 \$$, and exact change is needed. The only types of coins you can choose from are $5 \$, 10 \$$, and $25 \$$. In what ways can you pay the fare?

- 25Φ

Getting on the Bus

Bus fare costs $25 \$$, and exact change is needed. The only types of coins you can choose from are $5 \$, 10 \$$, and $25 \$$. In what ways can you pay the fare?

- 25Φ
- $5 \ddagger 5 \nmid 10 \ddagger 5 థ$

Getting on the Bus

Bus fare costs 25Φ, and exact change is needed. The only types of coins you can choose from are $5 \$, 10 \$$, and $25 \$$. In what ways can you pay the fare?

- 25Φ
- $5 \ddagger 5 \ddagger 10 \ddagger 5 \ddagger$
- $10 \ddagger 5 \nsubseteq 5 \$ 5 థ$

Getting on the Bus

Bus fare costs $25 \$$, and exact change is needed. The only types of coins you can choose from are $5 \$, 10 \$$, and $25 \$$. In what ways can you pay the fare?

- 25Φ

- $10 \ddagger 5 \ddagger 5 \ddagger 5 \ddagger$

But not:

- $5 \nsubseteq 5 \ddagger$

Getting on the Bus

Bus fare costs $25 \$$, and exact change is needed. The only types of coins you can choose from are $5 \$, 10 \$$, and $25 \$$. In what ways can you pay the fare?

- 25Φ
- $5 \ddagger 5 \ddagger 10 \ddagger 5 \Phi$
- $10 \ddagger 5 \ddagger 5 \ddagger 5 \Phi$

But not:

- $5 \nsubseteq 5 \$$
- ε

Getting on the Bus

Bus fare costs 25Φ, and exact change is needed. The only types of coins you can choose from are $5 \$, 10 \$$, and $25 \$$. In what ways can you pay the fare?

- 25Φ
- $5 \ddagger 5 \ddagger 10 \ddagger 5 \Phi$
- $10 \ddagger 5 \ddagger 5 \ddagger 5 \Phi$

But not:

- $5 \nsubseteq 5 \$$
- ε
- $10 \$ 25 \$$

State machine

The states tracks how much money has been paid so far. Once the 25 state is reached, the fare is accepted.

Formal Languages

Let Σ be a finite nonempty set called an alphabet.
Σ^{*} denotes the set of all finite words over Σ.
For example, if $\Sigma=\{0,1\}$, then

$$
\Sigma^{*}=\{\varepsilon, 0,1,00,01,10,11,000,001, \ldots\}
$$

where ε is the empty word.
If $x \in \Sigma^{*}$ is a word, $|x|$ denotes the length of x.

Deterministic Finite Automaton

Definition

A deterministic finite automaton (DFA) is a tuple $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ are the accepting states

Deterministic Finite Automaton

Definition

A deterministic finite automaton (DFA) is a tuple $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ are the accepting states

A DFA M accepts $x \in \Sigma^{*}$ if x ends at a state in F when passed through M.

DFA Example

What kinds of strings does this automaton accept?

DFA Example

What kinds of strings does this automaton accept?

- 000

DFA Example

What kinds of strings does this automaton accept?

- 000
- 0100011

What strings will it reject?

DFA Example

What kinds of strings does this automaton accept?

- 000
- 0100011

What strings will it reject?

- 1010

DFA Example

What kinds of strings does this automaton accept?

- 000
- 0100011

What strings will it reject?

- 1010
- 000001

DFA Example

What kinds of strings does this automaton accept?

- 000
- 0100011

What strings will it reject?

- 1010
- 000001

Accepts $x \in\{0,1\}^{*}$ if and only if x the parity of the number of $0 \sin x$ is different from the parity of the number of 1 s in x.

DFA as a computational model

- DFAs are a memoryless computational model: they only remember what state it is on!
- They are very simple, but can be used to solve surprisingly difficult problems.

Example: Sum of three squares

Legendre's three square theorem says that a number $n \in \mathbb{N}$ is a sum of three squares of integers

$$
n=x^{2}+y^{2}+z^{2}
$$

if and only if n is not of the form $n=4^{a}(8 b+7)$ for $a, b \in \mathbb{Z}_{\geq 0}$.

Example: Sum of three squares

Legendre's three square theorem says that a number $n \in \mathbb{N}$ is a sum of three squares of integers

$$
n=x^{2}+y^{2}+z^{2}
$$

if and only if n is not of the form $n=4^{a}(8 b+7)$ for $a, b \in \mathbb{Z}_{\geq 0}$.
We will make a DFA that reads in a binary representation of n and accepts if and only if n is a sum of three squares of integers.

Example: Sum of three squares

Suppose $n=4^{a}(8 b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n ?

Example: Sum of three squares

Suppose $n=4^{a}(8 b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n ?

If $b \in \mathbb{Z}_{\geq 0}$, then $(8 b)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 000
$$

Example: Sum of three squares

Suppose $n=4^{a}(8 b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n ?

If $b \in \mathbb{Z}_{\geq 0}$, then $(8 b)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 000
$$

So $(8 b+7)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111
$$

Example: Sum of three squares

Suppose $n=4^{a}(8 b+7)$ for some $a, b \in \mathbb{Z}_{\geq 0}$. What can we say about the binary representation of n ?
If $b \in \mathbb{Z}_{\geq 0}$, then $(8 b)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 000
$$

So $(8 b+7)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111
$$

Lastly, $\left(4^{a}(8 b+7)\right)_{2}$ looks like

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111 \underbrace{00 \cdots 00}_{\begin{array}{c}
\text { even \# of } 0 \text { 's, } \\
\text { may be } \varepsilon
\end{array}}
$$

Example: Sum of three squares

The automaton that accepts $(n)_{2}$ if and only if it is in the form

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111 \underbrace{00 \cdots 00}_{\begin{array}{c}
\text { even } \# \text { of } 0 \text { 's, } \\
\text { may be } \varepsilon
\end{array}}
$$

is:

Example: Sum of three squares

The automaton that accepts $(n)_{2}$ if and only if it is in the form

$$
\underbrace{\cdots}_{\in\{0,1\}^{*}} 111 \underbrace{00 \cdots 00}_{\begin{array}{c}
\text { even } \# \text { of } 0 \text { 's, } \\
\text { may be } \varepsilon
\end{array}}
$$

is:

So this automaton accepts $(n)_{2}$ if and only if n is not a sum of three squares.

Example: Sum of three squares

To accept all $(n)_{2}$ if and only if n is a sum of three squares, just flip the final states:

DFAO

Definition

A deterministic finite automaton with output (DFAO) is a tuple $M=\left\langle Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right\rangle$, where

- Q is a finite set of states
- Σ is the (finite) input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state
- Δ is the (finite) output alphabet
- $\lambda: Q \rightarrow \Delta$ is the coding (output function)

Example of a DFAO

Instead of final states, DFAOs have an output for every state:

Automatic sequence

Definition

Let $M=\left\langle Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right\rangle$ is a DFAO and suppose $\Sigma=\{0, \ldots, k-1\}$ for some $k \in \mathbb{N}$. The sequence $\left(x_{n}\right)_{n \geq 0}$ computed by M is defined by

$$
x_{n}=\lambda\left(\delta\left(q_{0},(n)_{k}\right)\right)
$$

where $(n)_{k}$ denotes the most-significant-digit-first base- k representation of $n \in \mathbb{N}$, i.e. $(n)_{k}=d_{t} d_{t-1} \cdots d_{1} d_{0}$ where $n=\sum_{i=0}^{t} d_{i} k^{i}$ and $d_{i} \in\{0, \ldots, k-1\}$ for all $i=0, \ldots, t$.

A sequence $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ is called k-automatic if there exists a DFAO M with input alphabet $\Sigma=\{0, \ldots, k-1\}$ that computes x.

Example: Thue-Morse sequence

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	

Example: Thue-Morse sequence

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	0
1	1	

Example: Thue-Morse sequence

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	0
1	1	1
2	10	

Example: Thue-Morse sequence

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	0
1	1	1
2	10	1
3	11	

Example: Thue-Morse sequence

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	0
1	1	1
2	10	1
3	11	0
4	100	

Example: Thue-Morse sequence

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	0
1	1	1
2	10	1
3	11	0
4	100	1
5	101	

Example: Thue-Morse sequence

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	0
1	1	1
2	10	1
3	11	0
4	100	1
5	101	0
6	110	

Example: Thue-Morse sequence

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	0
1	1	1
2	10	1
3	11	0
4	100	1
5	101	0
6	110	0
7	111	

Example: Thue-Morse sequence

n	$(n)_{2}$	$\mathbf{t}[n]$
0	0	0
1	1	1
2	10	1
3	11	0
4	100	1
5	101	0
6	110	0
7	111	1
\vdots	\vdots	\vdots

Example: Thue-Morse sequence

This automaton computes the Thue-Morse sequence

$$
\mathbf{t}=0110100110010110 \cdots,
$$

where $\mathbf{t}[n]$ is the parity of the number of 1 s in the binary representation of n, or equivalently the sum $(\bmod 2)$ of the bits in $(n)_{2}$.

Fair sharing

Alice and Bob are dividing things of non-increasing value amongst themselves. What is the fairest order for them to pick?

Fair sharing

Alice and Bob are dividing things of non-increasing value amongst themselves. What is the fairest order for them to pick?

Suppose Alice picks first. Then Bob should pick second, then Alice picks third, Bob picks fourth, etc:

ABABABABAB...

Fair sharing

Alice and Bob are dividing things of non-increasing value amongst themselves. What is the fairest order for them to pick?

Suppose Alice picks first. Then Bob should pick second, then Alice picks third, Bob picks fourth, etc:

ABABABABAB…

Alice gets an advantage: For every pair of items, Alice will get to pick the better one!

Fair sharing

Maybe after $A B$, what if they swapped order after?

$A B B A$

Fair sharing

Maybe after $A B$, what if they swapped order after?

$A B B A$

Now it's more fair if there are 4 items, but if we repeat this:

$A B B A A B B A A B B A B B A \cdots$

Fair sharing

Maybe after $A B$, what if they swapped order after?

$A B B A$

Now it's more fair if there are 4 items, but if we repeat this:

$A B B A A B B A A B B A B B A \cdots$

Alice gets an advantage again: Alice will get to pick the best item out of every 4 items!

Fair sharing

Let's flip the order again:

$A B B A B A A B$

Fair sharing

Let's flip the order again:

$A B B A B A A B$

Again, if we repeat this, Alice will get to pick the best item out of every 8 items!

Fair sharing

Let's flip the order again:

$A B B A B A A B$

Again, if we repeat this, Alice will get to pick the best item out of every 8 items!

If we keep flipping the order,

$A B B A B A A B$ BAAB ABBA BAAB ABBA ABBA BAAB…

Fair sharing

Let's flip the order again:

$A B B A B A A B$

Again, if we repeat this, Alice will get to pick the best item out of every 8 items!

If we keep flipping the order,

ABBA BAAB BAAB ABBA BAAB ABBA ABBA BAAB \cdots

If we replace $A \rightarrow 0$ and $B \rightarrow 1$, this is the Thue-Morse sequence!

Fair sharing

A
\downarrow
AB

Fair sharing

```
A
\downarrow
AB
\downarrow
AB BA
```


Fair sharing

```
A
    \downarrow
AB
\downarrow
AB BA
\downarrow
ABBA BAAB
```


Fair sharing

```
A
\downarrow
AB
\downarrow
AB BA
\downarrow
ABBA BAAB
\downarrow
ABBA BAAB BAAB ABBA
```

ABBA BAAB BAAB ABBA BAAB ABBA ABBA BAAB \cdots

This is an equivalent definition of the Thue-Morse sequence.

Is it really more fair?

If the value of the items is constant,

(a) $A B A B A B A B A B \cdots$

(b) Running average

Is it really more fair?

If the value of the items is constant,

(a) $A B A B A B A B A B \cdots$

(c) Thue-Morse

(b) Running average

(d) Thue-Morse average

Is it really more fair?

If the value of the items is decreasing,

(a) $A B A B A B A B A B \cdots$

Is it really more fair?

If the value of the items is decreasing,

(a) $A B A B A B A B A B \cdots$

(b) Thue-Morse

Infinite chess games?

The three-fold repetition rule in chess states that if the same position is reached three times, then the game is declared a draw.
With this rule, games cannot go on forever, as there are only a finite number of positions.

Infinite chess games?

The three-fold repetition rule in chess states that if the same position is reached three times, then the game is declared a draw.
With this rule, games cannot go on forever, as there are only a finite number of positions.

A former (German) official rule (up until 1929) was as follows: if the same sequence of moves is made three times in a row, then the game is declared a draw.

Can infinite games exist with this weakened rule?

Infinite chess games?

The three-fold repetition rule in chess states that if the same position is reached three times, then the game is declared a draw.
With this rule, games cannot go on forever, as there are only a finite number of positions.

A former (German) official rule (up until 1929) was as follows: if the same sequence of moves is made three times in a row, then the game is declared a draw.

Can infinite games exist with this weakened rule?
Yes!

Infinite chess games!

Max Euwe, a Dutch mathematician and former chess world champion, showed that infinite chess games are possible under this rule using the Thue-Morse sequence!

Max Euwe (1901-1981)
Credit: Wikipedia

Infinite chess games!

The Thue-Morse sequence is cubefree: it contains no blocks of the form $X X X$.

For example,

$0110100110010110 \ldots$

"001001001" will never appear in the Thue-Morse sequence.

We use this property of the Thue-Morse sequence to construct our infinite game.

Infinite chess games!

$0 \mapsto$ Nc3 Nc6, Nb1 Nb8 $1 \mapsto N f 3$ Nf6, Ng1 Ng8

Infinite chess games!

$$
\begin{aligned}
& 0 \mapsto \text { Nc3 Nc6, Nb1 Nb8 } \\
& 1 \mapsto \text { Nf3 Nf6, Ng1 Ng8 }
\end{aligned}
$$

Apply these moves in the order of the Thue-Morse sequence:

$0110100110010110 \ldots$

Because the Thue-Morse sequence is cubefree, the same sequence of moves will never be made three times in a row!

Transducers

What if instead of putting the outputs on the states, we put them on the edges?

As we input a string into a transducer, we write down the outputs of the edges we pass through.

Transducers

Definition

A transducer is a tuple

$$
T=\left\langle V, \Delta, \varphi, v_{0}, \Gamma, \sigma\right\rangle
$$

where

- V is a finite set of states
- Δ is the finite input alphabet
- $\varphi: V \times \Delta \rightarrow V$ is the transition function
- $v_{0} \in V$ is the initial state
- Γ is the finite output alphabet
- $\sigma: V \times \Delta \rightarrow \Gamma$ is the output function

Example: XOR of Thue-Morse

This transducer computes the XOR of consecutive bits (with the first bit outputted always being 0).

Example: XOR of Thue-Morse

Thue-Morse sequence:

$$
\mathbf{t}=011010011001011010010110 \cdots
$$

$$
T(\mathbf{t})=010111010101110111011101 \cdots
$$

Example: Running sum transducer

This transducer outputs the running sum mod 2 of the input.

Example: Running sum of Thue-Morse

Thue-Morse sequence:

$$
t=0110100110010110 \cdots
$$

$T(\mathbf{t})=0100111011100100 \cdots$

Example: Running sum of Thue-Morse

Continue taking running sums,

$$
\begin{aligned}
\mathbf{t} & =0110100110010110 \cdots \\
T(\mathbf{t}) & =0100111011100100 \cdots \\
T^{2}(\mathbf{t}) & =0111010010111000 \cdots \\
T^{3}(\mathbf{t}) & =0101100011010000 \cdots \\
T^{4}(\mathbf{t}) & =0110100010010000
\end{aligned}
$$

Example: Running sum of Thue-Morse

If we plot each running sum $T^{k}(\mathbf{t})$ on a separate row, we get a Sierpinski-like fractal:

Example: Running sum of Thue-Morse

If we plot each running sum $T^{k}(\mathbf{t})$ on a separate row, we get a Sierpinski-like fractal:

How can we characterize each row? Can we get a nice expression for $T^{k}(\mathbf{t})$ for arbitrary k ? Right now, we only know expressions for $k=2^{n}$.

Beyond base-k

Up until now, we've only considered automata that compute an automatic sequence when taking as input nmbers in base- k :

$$
(n)_{k}=d_{t} d_{t-1} \cdots d_{1} d_{0} \text { where } n=\sum_{i=0}^{t} d_{i} k^{i}
$$

and $d_{i} \in\{0, \ldots, k-1\}$ for all $i=0, \ldots, t$.

Beyond base-k

Up until now, we've only considered automata that compute an automatic sequence when taking as input nmbers in base- k :

$$
(n)_{k}=d_{t} d_{t-1} \cdots d_{1} d_{0} \text { where } n=\sum_{i=0}^{t} d_{i} k^{i}
$$

and $d_{i} \in\{0, \ldots, k-1\}$ for all $i=0, \ldots, t$.
Instead of writing numbers as sums of powers of k, we could write them in different numeration systems, e.g. Fibonacci!

Beyond base-k

The Fibonacci numbers are defined by the recurrence $F_{n}=F_{n-1}+F_{n-2}$, where $F_{0}=1, F_{1}=2$.

You can write any number $n \in \mathbb{N}$ as a sum of Fibonacci numbers:

$$
(n)_{\mathrm{fib}}=d_{t} d_{t-1} \cdots d_{1} d_{0} \text { where } n=\sum_{i=0}^{t} d_{i} F_{i}
$$

and $d_{i} \in\{0,1\}$ for all $i=0, \ldots, t$.

Beyond base-k

The Fibonacci numbers are defined by the recurrence $F_{n}=F_{n-1}+F_{n-2}$, where $F_{0}=1, F_{1}=2$.
You can write any number $n \in \mathbb{N}$ as a sum of Fibonacci numbers:

$$
(n)_{\text {fib }}=d_{t} d_{t-1} \cdots d_{1} d_{0} \text { where } n=\sum_{i=0}^{t} d_{i} F_{i}
$$

and $d_{i} \in\{0,1\}$ for all $i=0, \ldots, t$.
However, this decomposition is not unique! For instance,

$$
14=13+1=8+5+1=8+3+2+1
$$

To make representations unique, we require that no two consecutive Fibonacci numbers be used in the sum, i.e.

$$
(14)_{\text {fib }}=100001 \text {, but not } 11001 .
$$

Beyond base-k

For example,

$$
101 \rightarrow 1 \cdot 3+0 \cdot 2+1 \cdot 1=4
$$

and

$$
100101 \rightarrow 13+3+1=17
$$

are valid Fibonacci representations, but 1101 and 1001100 are not.
So $x \in\{0,1\}^{*}$ is a valid Fibonacci representation if and only if x contains no consecutive 1 s .

Fibonacci Thue-Morse

The Fibonacci Thue-Morse sequence ftm is the sum $(\bmod 2)$ of the Fibonacci representation of n. The automaton that computes it is:

$$
\mathrm{ftm}=01110100100011000101 \cdots
$$

ftm is Fibonacci-automatic, but not k-automatic for any k. Notice that the above automaton is only defined on valid Fibonacci representations.

Automatic sequences are closed under transduction

The transduction of a k-automatic sequence is still automatic:

\longrightarrow

Automaton \longrightarrow Transducer $=$ Automaton

But only for k-automatic sequences! Can we apply transducers to Fibonacci-automatic sequences and get another Fibonacci automaton?

Automatic sequences are closed under transduction

The transduction of a k-automatic sequence is still automatic:

\longrightarrow

Automaton \longrightarrow Transducer $=$ Automaton

But only for k-automatic sequences! Can we apply transducers to Fibonacci-automatic sequences and get another Fibonacci automaton? I proved that we can! (Still unpublished)

Further Work

- Walnut is a software written by Hamoon Mousavi that answers questions posed in first-order logic about automatic sequences; it shortens long proofs by cases to writing and running a few commands.

Further Work

- Walnut is a software written by Hamoon Mousavi that answers questions posed in first-order logic about automatic sequences; it shortens long proofs by cases to writing and running a few commands.
- Transducers have only recently been added to Walnut, and new applications for them are constantly being found.

Further Work

- Walnut is a software written by Hamoon Mousavi that answers questions posed in first-order logic about automatic sequences; it shortens long proofs by cases to writing and running a few commands.
- Transducers have only recently been added to Walnut, and new applications for them are constantly being found.
- Applying transducers to sequences that are not over base- k has only recently been considered, and is still mostly unexplored.

Summary

- Automatic sequences are a class of sequences that are computed by finite automata.

Summary

- Automatic sequences are a class of sequences that are computed by finite automata.
- A lot of seemingly difficult problems become surprisingly simple after viewing them through the lens of automata theory.

Summary

- Automatic sequences are a class of sequences that are computed by finite automata.
- A lot of seemingly difficult problems become surprisingly simple after viewing them through the lens of automata theory.
- Use the Thue-Morse sequence to share things fairly with your friends!

Acknowledgements

Professor Jeffrey O. Shallit School of Computer Science University of Waterloo

